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PROPAGATION OF A BOUNDARY DISTURBANCE IN A STRATIFIED GAS FOR 
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Introduction. A systematic treatment of wave disturbances in rarefied gases should be 
based on the Boltzmann kinetic equation or its standard approximations [i, 2]. The purpose 
of the present paper is to use the kinetic equation to study the forced vibrations of a ver- 
tically stratified gas in a gravitational field for given types of excitation on the bound- 
aries. Defining the Knudsen number Kn of the problem as the ratio of the mean free path of 
the gas molecules to the scale of the inhomogeneities due to the propagating waves, we find 
that Kn increases with height because of the height dependence of the mean free path in the 
stratified gas. Hence it is required to determine the motion of the gas for arbitrary Kn. 

In many respects this problem is similar to the well-known problem of propagation of 
ultrasound in a uniform gas. Interest in the latter problem from the point of view of the 
kinetic theory of gases was stimulated by the work of Van Chan and Uhlenbeck [2]. Important 
results in this field have been obtained for the linearized Boltzman equation and for ap- 
proximate kinetic equations using analytic continuation of dispersion relations [3], the 
Wiener-Hopf method [4], reduction to a Riemann-Hilbert problem [5, 6], and numerical inte- 
gration along the characteristics [7]. These results suggest that the wave nature of dis- 
turbances persists in a gas with Kn ~ ;. In this case the phase velocity and absorption co- 
efficient of acoustic waves calculated with the help of the BGK kinetic equation are found 
to be in good agreement with experiment. The BGK equation can also be used to analyze the 
propagation of wave disturbances in a stratified gas. Physically, the stratification of the 
gas leads to internal waves, together with the usual acoustic waves. The dispersion relation 
for internal waves is quite different from the dispersion relation for acoustic waves and the 
study of kinetic effects on the propagation of internal waves is of interest in the physics 
of the upper atmosphere [8]. However, the presence of an external field and the stratifica- 
tion of the gas complicates the problem, since theresult is an equation with variable coef- 
ficients. Hence the usual methods of finding the solution for sound in a uniform gas are no 
longer applicable, since they rely on separation of Variables with the help of the Fourier 
transform. The method of integration along the characteristics has to be modified to take 
into account nonlinear characteristics. 

To describe the propagation of boundary disturbances in a stratified gas for arbitrary 
Knudsen number we reduce the integrodifferential BGK equation to a closed system of integral 
equations for the first five moments of the distribution function. A general integral kinetic 
equation including the boundary conditions on the surface of a body in a flowing gas was ob- 
tained earlier in [9]. This equation was solved in [i0] by transforming to a system of 
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integral equations for the expansion coefficients of the distribution function in a series 
of generalized Hermite polynomials in velocity space. An important step in obtaining the 
results of the present paper is the use of an approximate form of the collision integral in 
order to close the system of moment equations for the gas in a gravitational field by inte- 
grating along parabolic characteristics. 

Statement of the Problem. A monatomic gas is found in a gravitatinal field g and is 
stratified exponentially in z (along the vertical) in the equilibrium state. The gas is as- 
sumed to be bounded from below (at z = 0) and above (z = h) by planes whose motion generates 
the propagating disturbances. Then for the linear correction~ to the Maxwell--Boltzmann dis- 
tribution 

A = no ( v ~  vr)  -3 exp  fi vr} 

we write down the linearized BGK equation 

ot or - g 7v~ = v exp  - M~ (t, r )  Xi (v)  --  ~p ( 2 )  

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

, 1 ~ o  = , o  (t, x ,  y, ~), ~o1~=~ = ~ (t, x ,  y, v).  ( 3 )  

Here n o is the density of the unperturbed gas at z = O, v T = (2kBT0/m) I/2 is the average 
thermal speed of the molecules, H -- kBT0/mg is the scale height of the atmosphere, v = (Vx, 
Vy, Vz) is the velocity of the gas molecules, r = (x, y, z) is the position vector, t is the 
time, v = n0kBT0/q is the collision frequency of the molecules (the parameter of the BGK 
model), and n is the shear viscosity of the gas. The functions Xi on the right-hand side 
of (2) are the eigenfunctions of the linearized Boltzmann collision operator corresponding 
to zero eigenvalue: 

X ~ =  1, ~.2 = V 2  r - ,  3 r  X ~ =  - - ,  " i s =  _ . ( 4 )  
OT VT VT OT 

The moments M i are defined as the scalar products of Xi with the weight f0 given by (i): 

1 

Mi =- ("Li, ~ )  -- 3/2 3 ( s )  
7L 0 T 

and are related to the hydrodynamic parameters of the gas (the density n, average velocity u, 
and temperature T): 

tl - -  tl 0 Ux Uv l~z ~ ] F ~  T -  T O 
M I -  no "' M2 = V~-- ,vr  M3 = V~. ~,OT Ma = f '2-- ,vr  Ms = " 2  To " ( 6 )  

Integral Form of the BGK Equation withthe Boundary Conditions. In the spirit of the 
method of characteristics, we transform the integrodifferential equation (2) toget]her with 
the boundary conditions (3) into an integral equation for the function ~. We introduce the 
new variables {a'} = {t',r',v'} and denote the old variables as {a} = {t,r,v}. The direct and in- 
verse transformations from {~} to {a'} are 

t' (z) = t + v j g ,  

x'  (z) = x + v~v:/g, 

y' (z) = y + VyVjg, 

v; (~) = v,, 

v/(~) = v:,, 

v" (z) = sgn  (v:) ~ + 2gz, 

{co (~)}: {c, (z')}: 
~ (~) = z, z (z ' )  = z ' ,  

t ( ~ ' )  = t' - sgn (v3 ~ - 2 g ~ ' / g ,  

x (z ' )  = x '  - o / s g n  (v.) ~ - 2gz ' / g ,  

y (z ' )  = y '  - v / s g n  (G)  ~ - 2gz ' /g ,  

v~ (z') = v~; 

5 (z') = v~; 

o~ (z') = sgn  (v=) ~ -  2gz',  

(7)  

where we assume that v$ 2- 2~'~ 0. We note that the sgn function in (7) ensures that the trans- 
formation between {~} and {~'} is unique. 
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z=h 

Fig. 1 

In terms of the new variables {~'} the BGK equation (2) takes the form 

v ~ ( z ' ) T z , + v e x p  - ~ = v e x p  - ~ M ~ ( t ( z ' ) , r ( z ' ) ) ~ ( v ( z ' ) ) .  ( 8 )  
i = l  

Before formally integrating (8) with respect to z', we discuss the behavior of the character- 
istics of the left-hand side of (2), which are specified by ~'(Z) from (7) at constant t', 
r',v' . We construct these characteristics in the (z, v z) plane. 

We see from Fig. 1 that there are three types of characteristics for the problem of os- 
cillations of a stratified gas between two planes. Characteristics of the first type begin 
from the plane z = 0 and end in the plane z = h. Characteristics of the second type begin 
at z = 0, change direction inlthe plane v z = 0, and return to the plane z = 0. Character- 
istics of the third type begin at z = h and end at z = 0. The boundary separating the dif- 
ferent types of characteristics (shown by the heavy line in Fig. i) is given by the equation 
v~ = 2g(h - z). 

In accordance with the form of the characteristics, the boundary functions ~0 and ~ in 
velocity space are specified in terms of subregions in Vz: the function ~0 (~l) is specified 
in three (two) subregions in v z. These functions can be written in the form 

�9 I~=o = +o = o (~) ,o+ + o ( -  ~) o (~ + , a - ~ )  , o -  + o ( -  ~ - , a ~ )  r ( 9 )  

~ ~ [ ~ = ~ = ~ : = o ( ~ ) ~ §  (1o) 

where 0(v z) is the Heaviside unit step function. 

The effect of the boundary functions on the right-hand sides of (9) and (i0) propagate 
along the characteristics up to the opposite boundary. Therefore, all of these functions are 
related to one another. Of the five boundary functions in (9) and (I0) really only two (~0+ 
and ~i-), corresponding to particles leaving the boundaries, can be specified as independent 
functions. These functions play an active role in the boundary conditions and are completely 
determined by the nature of the motion of the boundaries and the interaction of the boundaries 
with the gas. The three remaining "passive" functions (~0-, ~0-, ~i+), which take into account 
the contribution of particles incident on the boundaries, can be expressed in terms of ~0+ and 
~i-. It will be shown below that in the collisionless case the passive functions can be ex- 
pressed in terms of the "active" functions by explicit linear relations. However the pres- 
ence of collisions leads to integral terms in these relations which involve the total distri- 
bution function ~. 

Equation (8) together with the boundary conditions (9) and (i0) can be integrated with 
respect to z' along the characteristics, assuming that the boundary functions in (9) and (i0) 
are formally independent. The region of velocity space in which ~ is defined is broken up 
into three subregions (see Fig. i). The direction of the integration along the character- 
istics in these subregions is chosen as follows. In regions I and II the integration goes 
from the boundary z' = 0 and in region III from z' = h. Combining the relations obtained in 
the three subregions of velocity space into a single relation and transforming back to the 
old variables {~}, we have 

z 

(t, r, v) = ~ (t, r, v) + o (v~ + r  (h - z))  v f d z ' ~  (~, z', ~ )  x. 
0 

5 

X E 34/({al ( z  - z ' ) ) , , z ' )  Zi (v' (z  - z ' ) )  - 0 ( -  ~ - r  - z ) )  v x 
i=1  

h 5 : 

x f dz'  �9 (z, z', v~) ~ M, ({ai (z - z')); z') ~ (v' (z - z ')),  ( 11 ) 
z i=I 
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where 

v, (~, r, v) = oa (~, 0, v j  [0 (vJ We+ ({a~ (z)}, v' (z)) + 0 ( -  v~) 0 (v~ + r  - z) )  ~o-  ( { ~  (z)}, v' (z ) ) ]  + 

+ tp (z, h, v~) 0 ( -  v~ - , /2g(h - z)) ~ _  ({a~ (z - h)}, v' (z - h)) 

and where we have introduced the functions 

q~ (z, ~,, v~) = 

(z, i ,  vJ = q~ 

i2) 

exp f dz " exp ( -  Z''/t~ [ 
- v - - ;~-- - -~  �9 v~(~ . )  | '  

Y J 

(z, ~, v~) exp ( -  "~/H)/v/(z  - z-). 

13) 

14) 
! 

In (13) and (14) the functions v~(z - z") and Vz(Z - E) are defined as before by (7) and the 
set of independent variables {~l(z)} = {t1(z), x1(z), yi(z)} in (12) is given by 

t~ (z) t' (z) ~ (z) ~ ;  (z) ~ ;  (~) = - - - ,  x l ( z ) = x ' ( z )  , y l ( z ) = y ' ( z ) - - -  ( 1 5 )  
g g g 

The functions T0- and ~i+ do not appear explicitly in (12), since the integration is 
carried out from the boundary z = 0 along the characteristics of the first and second types 
and from z = h along characteristics of the third type. In transforming the BGK equation to 
integral form a different choice of the direction of integration along the characteristics 
in regions I and III is possible. In this case the functions T~ would contain different 
boundary functions from (9) and (i0), but the number of boundary functions would still be 
equal to three. When the dependence of the passive functions on the active functions is taken 
into account, all possible integral forms of the BGK equation are equivalent. 

Since the moments M i are related to ~ by (5), Eq. (ii) is an integral equation for the 
distribution function ~. It is equivalent to (2) with the boundary conditions (9) and (i0), 
which can be verified by direct differentiation with respect to t, r, and v z. 

We show that QII) satisfies the boundary conditions (9) and (i0). We consider (ii) when 
v z > -(2g(h - z)) 1/~ and z + 0. With the help of (12) we have 

T = O (vz) To+ (t, x, y, v) + 0 ( -  v~) 5%- (t, x, y, v). 

Hence in this case (ii) satisfies the lower boundary condition. When v z < --(ig(h- z)) I/2 and 
z § 0 we have T = T0- from (9). But comparing (9) and the relation obtained from (ii) and (12) 
for these conditions, we obtain the following relation between ~0- and TL- 

~o_=~_({~(-h)},v~(-h))tP(O,h, v j - ~  d r ' r  (0, r', ~) ~ M~ ({a~ ( -  r ' ) l ,  r ' )  z, (~" ( -  r ' ) ) .  (16)  
0 i=1 

Similarly when v z > 0 and z § h we obtain a relation between ~I+ and ~0+ 
h 5 

~ t + = W ( h , O , ~ ) ~ o + ( { a ~ ( h ) } , v ' ( h ) ) + v f d z ' ~ ( h , z ' ; ~ ) ~ M ~ ( { a ~ ( h - z " ) } , z " ) ~ i ( v ' ( h - z " ) ) .  ( 1 7 )  
0 i=1 

F i n a l l y  when v z < 0 and  z + h we o b t a i n  f r o m  ( 1 1 )  and  ( 1 2 )  t h a t  T = T l _ ( t , x , y , v ) ,  w h i c h  i s  t h e  
u p p e r  b o u n d a r y  c o n d i t i o n  ( 1 0 ) .  

Motion of the Gas in Limiting Cases. We consider the motion of the gas in different 
limiting cases of (Ii): free-molecular flow, the limit of no stratification, and propagation 
of disturbances in a stratified atmosphere bounded only from below at z = 0. 

We consider first free-molecular flow of a gas. Setting the collision frequency v = 0 
in (Ii), we obtain 

= o (~) ~o§ ({a~ (z)}, v' (z)) + o ( -  ~) o ( ~  + V2g(h  - z ) )  • 

x ~o_ ({~ (z)}, v' (z)) + o ( -  v~ - gC2y~(h - z)) ~ _  ( (~  (z - h)}, v' (z - h)). (18)  

We see from (18) that for free-molecular flow the state of the gas at the point t, r,v is 

determined for v z > 0 by particles leaving the surface z = 0 at time t + ! [~ -~f~+2~ ] with 
g 

velocities Vx, Vy, /V~ + 2gz. When -(ig(h - z))I/2 < v z < 0 the state of the gas is deter- 
! 

mined by particles arriving at the surface z = 0 at time t- 7 [I~l -V~+2~] at the point whose 
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coordinates are x - u~ [lull - v~, + 2gz ]/g, y - vy [Iv~[ - V~ + 2gz ]/g and with the velocities Vx, Vy, 

-~/v~ + 2gz. These particles left the surface z = 0, reversed direction in the gravitational 
field, and returned to z = 0 without reaching z = h. When v z < -(2g(h - z)) I/2 the state of 

I 
gas is determined by particles leaving the boundary z = h at time t--[[u~[- %lye+ 2g(z-h)] g 

from the point whose coordinates are x-vx [luz[ - ~/u~+2g(z-h)]/g, y-U~. [Ivzl -v~+2g(z-h)]/g 

with velocity vx, Vy, -%/u~ + 2g(z-hi- As expected, for a particle leaving the boundary z = h 
its velocity is always negative at any point z < h. 

We next consider a gas without stratification. Taking the limits H § ~ and g + 0 in 
(ii)-(15), we find 

~p 0 (v 0 exp - = ' v ~  % o o + ( { d ( z ) ) , v ) + O ( - v ~ ) e x p  v x 

z 

x Tl -  ({d (h - z)}, v) + 0 (v 0 v dz' 1 exp - v mi ({a (z • z')}, z') x 
Uz i=l 

0 
h 

x~t~(v)-0(-v~)v dz'iexp - v - ~ .  Mi( la ( z - z ' ) I , z ' ) x , (% (19) 
i = l  

w h e r e  {& (z)} = {t - z/v~, x - vxz/v~, y - v vz/v~}. 

I f  i n  ( 1 9 )  t h e  d i s t a n c e  h b e t w e e n  t h e  b o u n d a r i e s  g o e s  t o  i n f i n i t y  t h e n  

q~=0(v~)exp \ - v ~ ]  ~oo+ ({a (z)}, v) + 0 (v~ )v  dz' exp - v  ; ,=~ 

0 

- 0 ( -  v,_) v dz' 1_ exp - v . V2 ~ M,. ({a (z - ~')}, z') x~ ( %  
z i=I 

In the one-dimensional case (20) reduces exactly to the equation obtained in [4, 7] for 
propagation of one-dimensional sound in a uniform unbounded atmosphere. The effect of the 
upper boundary vanishes when h -> ~, since the exponential in (19) in front of %01- vanishes 
at large h and v z < 0. However from (16) it follows that in this case T0-~ 0. 

We consider the final limiting case when the upper boundary goes to infinity for a 
stratified gas. Putting H = const and taking the limit h + ~, we find from (Ii) 

T = ',V (~, O, v.) [0 (v~)To+ ({c~ (z)}, v' (z)) + 0 ( -  v3 ~,o- ({,~ (~)}, v' (z)) l + 
z 5 

+ v f dz' r (z, z', v0 ~ M/({e l  (z - z')}, z') 7~ ( v' (z " z')). ( 2 1 )  
0 i =  1 

This equation will be used as the basis for further study. 

Relation between the Boundary Functions for Incident and Departing Particles. If we 
attempt to obtain the limit of a uniform gas by putting H + ~ in (21), we do not obtain (20) 
Since the relation between the passive boundary function %0o- and the active function To+ must 

be taken into account in (21) before taking the limit H ~ co. 

We consider the relations between the boundary functions To- and To+ in more detail. 
From Fig. i the function ~0- (the velocity region -/2gh < v z < 0) occurs on characteristics 
beginning and ending on the boundary z = 0 and not reaching z = h. Hence the condition for 
To- should be the continuity condition of the distribution function on the characteristics 

at v z = 0: 
T (t, r, v)[,~=+o = T (t, r, v)[~=_ol (22) 

Putting the right-hand side of ( 2 1 )  with v z = +0 and v z = -0 into (22), we obtain To- in 

terms of To+: 

To- (t, x, y, v) l,~,o = ~v ~- (o, ~/2s ,  v3 To+ ({a~ (o)}, ,,' (o))  + 
s ~z2g 

+ W_ (0, v~/2g, v,) v ~, f dz"A'- {q,(O, z", vO x (23) 
i=l 0 

• 'v -~ (o, ~/2g,  v~) m~ ({~ ( -  z")}, z ' ) ~  (v' (z"))}. 
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Here A• E Q+ - Q_, the indices + and - determine the sign of the function sgn(vz) appearing 
in (7), (13)-(15) for v'(z), ~, O, {al}, respectively. Using (23), we can write (21) in the 
form 

(r, v, t) = [0 (~) + 0 ( -  v 3 ~2_ (z, z + v~/2g, vz) ] [~§ (z, O, ~) x 

x ~o§ d ~  (~)h 4 § (z)) + v Jz"r (z, z'; ~) ~ M,. (/at (~ - ~")}, z") x 
0 i=1 

2 
5 z+�89 

x .f., (,,"~ (~ - ~" ) ) ]  + o ( -  ~) ,v_ (~, ~ + ~.~/2g, ,,~) ~, ~, f a~"A �9 x 
i =  I. z 

x {@ (z, z'; v 0 kv -~ (z, z + ~ / 2 g ,  v,) Mi ({~ (z - z'3}, z") ~, (v' (z - z"))}. ( 2 4 )  

Note that if we take the limit of a uniform gas in (24) by putting H + ~, g § 0, we obtain 
( 2 0 ) .  

It is not difficult to extend these results to the case of an upper boundary at z = h. 
In the presence of the upper boundary the continuity condition (22) is imposed on the dis- 
tribution function only along the characteristics of the second type (see Fig. i) in the 
region 0 ~< z ~< h. 

The continuity condition (22), and hence (23), are general relations holding for any form 
of the function ~00§ For further study we consider diffuse reflection from a plate oscilla- 
ting about z = 0 with the vertical (along the z axis) velocity u0(t, x, y): 

f(t'r'v)t'~>~176 (v~u)21"vr j (25) 

In this problem the density n s corresponds to the steady-state motion of the gas. According 
to the usual procedure [4-7], n s is determined by requiring that the average vertical velocity 
at z = 0 be equal to u0(t, x, y). Linearizing (25), we find 

u 0 ns -_____~ ~o+(t,x,y, v)=~t~,o.~=o=2~v~+ ,~ (26)  

S u b s t i t u t i n g  ( 2 6 )  i n t o  ( 5 )  f o r  Mn tz=o ,  we o b t a i n  f o r  (n  s - n o ) / n  o --- Mls  

r  _2 f d ,  e ~ p ( - ~ / ~ ) ~ , l ~ o o . ~ o .  (27)  M~ = - -  
OT ~ T  ~_z< 0 

Therefore, (26) and (27) relate the distribution functions belonging to the different half 
spaces in v z. The function %o0-= ~I==0.~<0 in (27) should be determined using (23). 

System of Integral Equatiqns for the Moments of the Distribution Function. The charac- 
teristic feature of the BGK equation is that the distribution function can be found in terms 
of its first five moments. Indeed, if the moments Mz,...,M s are known we can substitute them 
in (24) and integrate with respect to z, thereby obtaining the function %o. The contribution 
of the higher moments to the distribution function is effectively taken into account by the 
kinetic boundary condition on the right-hand side of (24) and by the fact that in performing 
the integration with respec't to z the quantities M i (i = i,... ,5) must be known in all space 
and for all previous times. 

We put u0 = (0, 0, u0exp ( R o t - i k ~ - i ~ y ) )  and look for the solution to (24) in the form 

~o (t, r, v) = r (z. v) exp (loot - lk .x - i~y).  ( 2 8 )  

We then have 

~o+ (t, x, y, v) = ~o+ (v) exp (l~ot - ik~x - l~y); ( 2 9 )  

M. (t, r) = h~/,, exp (io~t - ik.x - ikyy), ( 3 0 )  

and the quantities Mn and ~ are related as before by (5). 

We next obtain from (24) a system of integral equations for the moments Mn" We take 
the scalar product of (24) with the eigenfunctions Xn of (4), corresponding to these moments. 
It will be convenient to transform to dimensionless variables 

c--- v / v r ,  ~ =- z / H .  ( 3 i )  
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Using the identity 
~+c2/2g 

y ac f Y ac . . . .  

cz<O ~ ~ rz < V~:~-~ 

we obtain from (24) and (28)-(30) a system of inhomogeneous Fredholm integral equations of 
the second kind for the Mn: 

5 ~ 5 
= I d% ~.~,, (~, ~') ~f~ (~')' (32) 

m=l 0 m=l 

The functions P~ (~), R. (~), / ~  (~,, ~'),  K ~  (~, ~') 
a u x i l i a r y  f u n c t i o n s  

I,,.,, (~, ~') = v'~ ~f dc exp {-c  ~ + g+ (~,, ~', c)}. c" (c ~ + ~,),,-'2; 
o 

e~ 
J ...... (~, ~') = v ~  f dc e x p  { i c2 + g -  ( ~  , ~ ' , c)  - 2 g -  ( ~  , I c 2 , c)} r ( c  2 + ~" )~/2. 

o 

are conveniently expressed in terms of the two 

(33) 

(34) 

Here  ;' 

g~(~, ~', c) = - f d ~  [b~ (~1 exp 
0 

v H  cull 
~" (?') = ~-r exp ( -~ ) ;  ~ = - - ;  

OT 

In the one-dimensional case (62 = 0) we have g+ 
recursion relations 

( ~ ' )  "l- /Z6~ i~i ~2C1 (C 2 -- ~1)-1/2;  

= g-. The functions In, m 

L ...... 2 (~, ~') = 1,,+2,,,, (~, ~') + ~'I,,.,,, (~'), 
ll' ...... 4 (~, %') = I,,+,,,,, ('~, ~') + 2~'I,,+2,,,, (?.,') + ~'21 ...... (~, ~'), 

P 
1, ...... ~ (~, ; ' )  = E GI,,+~o,-,>..V ~ 

k=O 

and Jn,m obey the 

(35) 

and the following relation for the derivative with respect to the argument ~': 

d m 
- ~  I ..... (~, ~') = - [by (~)exp (~') + i6~ l L,.,,,-~ (~, ~') + ~ t .. . . . .  2 (~, ~') + b2L,+~ .....  1 (~, ~'). ( 3 6 )  

The relations (35) and (36) have the same form for Jn,m" A relation for the derivative of 
In, m with respect to ~ can also be obtained, but it is not written out here because of its 
complexity. 

We also note that in the limit of a uniform gas g § 0, H + ~, the function Jn,m(~, ~') § 
0 and In,m(r ~') reduces to the Abramowitz function [ii] well known in the kinetic theory of 
uniform gases. 

In the one-dimensional case (6 = = 0), the quantities in (32) can be rewritten as (n, m = 

1, 2, 3) 

P1 ( ~ )  - 2 uO [/0,1 -t- Jo, l ]  ( ~ ,  "~), , P2 ( ~ )  = 2 tt---~O ~ [ IL l  -- J l ,  l ]  ( '~, ~ ) ,  
OT V T 

P3 (r.) = 2 [h,~ - ~ Io,~ + ]2,~ - 7 Jo,~t (1;, 1;), 

& (~) = 14.o + 4.o1 (L  ~), R~ (~) = 42  [I,.o - ]1.ol (r,, t;), 

V ~  1 1 ]Ool(~, ~), ~ 1 3 ( L r , ) = ~ ( V ) [ I o _ l + 4 . _ l I ( r , , ~ _ V )  ' R3 ( ~ )  = 2 [12, 0 -  "210'~ + ] 2 . o - - - ~  , 

�9 i )  

~ .2  (L  ~ ) =~v  (V)  r  [Io, o + 4 .o l  (L  ~ - V),  

V ~  1 1 ~ j ( ~ , ~ , ) = & ( ~ , )  2 [ l o . ~ - 7 I o , - 1 + J o . ,  i ] o . - 1 1 ( ~ , ~ - ~ ' )  , 

~,~ ( L  V )  = ~,. (V)  ~ [I~,-~ - A,-~ 1 ( L  ~ - V) ,  

2 1 ~ 1 

~ ( L  V )  = ~,. ( V )  2 [4 , -1  - 7 lo,_~ + ]~,-1 - ~ 4 . - ~  l (~ ,  ~ - V ) ,  
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2 1 1 

~ (~, ~') = a, (~') 7 T [z~.o - ~ 4 . o  +:~.o - ~ 4 . o ] ( L  ~ - ~'), 

2 5 1 i 5 1 l 

To shorten the notation, in these expressions the arguments common to all of the functions 
In, m and Jn,m have been written in parentheses to the right of the square brackets. Expres- 

sions for Kn(~)(r r are easily obtained from the relations for K(1)(~,n,m r with the help 

of the substitutions 

4,,,,, ( L  % - V )  ~ ( - ~ )  ..... ~.,+~,.-,. ( V ,  ~ '  - ~),  J ...... ( L  ~ - %') ~ ],,,+~,,,-~ ( V ,  ~ '  - ~). 

The above relations form a complete set of expressions for Pn, Rn, K(Z), K(2) in terms of 
n,m n,m 

In, m and Jn,m" 

The system of equations (32) also involves M1s, which is a functional of the distribu- 

tion function for c z < 0 and ~ = 0. According to [7], this difficulty can be overcome by 
assuming a solution to (32) of the form 

3~/,, (~) = a,. (~) + h/.b,. (~). (37)  

S u b s t i t u t i n g  (37)  i n t o  (32 ) ,  we o b t a i n  t h e  e q u a t i o n s  
5 ~ 5 

a,, (~) P,, (~) + E f d~'/~"l")' (~' ~') a,,, (~') + E f , I "  'K (2) = ~ ....... ( L  %') .,,, (V);  ( 3 8 )  
m=l 0 m=l 

5 ~ 5 r 

! I) ~-~ - -rim b,, (~) = R. (~) + ~ f d~/~,,,,, (~, ~') b,,, (~') + .~ f ,t?'A42) (~, ~') b,,, (~'), (39)  
m = l  0 m = l  F, 

which do not involve M1s" 

Solving (38) and (39) for the functions a n and b n, and thereby finding ~ for i~ = 0 and 
c z < 0 from (23), we substitute the result into (27) for M1s- Using (37), we obtain a linear 
algebraic equation for M whose solution is 

where 

IQ= [ ~ $ I -  r{a}] [So+ T{b}]-l, (40) 

sp = [,% - s~,~] (o, o) ;  (41 )  
3 oo 

T {a} = ~ f -~m" z.-(2)..2 .... (0, ~') a,. (~'). (42)  
m = l  0 

The system of equations (33)-(42) represents an algorithm for solving (32) for the mo- 
ments of the distribution function and therefore the integral equation (24) for the distri- 
bution function T itself in the case of wave disturbances generated by an oscillating plane 
in a monatomic gas stratified in a gravitational field. A crucial step in this algorithm is 
the calculation of the functions In,m(~, ~') and Jn,m(r ~'), which are analogous to the 
Ambramowitz functions in the approach of [7] to the propagation of a boundary disturbance in 
a uniform gas. In the first step of the procedure, (38) and (39) are solved, taking into 
account (33)-(36). The solutions are substituted into (40) and M1s is determined with the 
help of (41) and (42). The moments M n are then found using (37). Finally, they can be sub- 
stituted into (24) for T. 
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